Classification with Incomplete Data Using Dirichlet Process Priors

نویسندگان

  • Chunping Wang
  • Xuejun Liao
  • Lawrence Carin
  • David B. Dunson
چکیده

A non-parametric hierarchical Bayesian framework is developed for designing a classifier, based on a mixture of simple (linear) classifiers. Each simple classifier is termed a local "expert", and the number of experts and their construction are manifested via a Dirichlet process formulation. The simple form of the "experts" allows analytical handling of incomplete data. The model is extended to allow simultaneous design of classifiers on multiple data sets, termed multi-task learning, with this also performed non-parametrically via the Dirichlet process. Fast inference is performed using variational Bayesian (VB) analysis, and example results are presented for several data sets. We also perform inference via Gibbs sampling, to which we compare the VB results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior...

متن کامل

A Semiparametric Bayesian Approach to Network Modelling using Dirichlet Process Priors

This paper considers the use of Dirichlet process priors in the statistical analysis of network data. Dirichlet process priors have the advantage of avoiding the parametric specification for distributions which are rarely known and for facilitating a clustering effect which is often applicable to network nodes. The approach is highlighted on two network models and is conveniently implemented us...

متن کامل

Multi-Task Classification for Incomplete Data

A non-parametric hierarchical Bayesian framework is developed for designing a sophisticated classifier based on a mixture of simple (linear) classifiers. Each simple classifier is termed a local “expert”, and the number of experts and their construction are manifested via a Dirichlet process formulation. The simple form of the “experts” allows direct handling of incomplete data. The model is fu...

متن کامل

Robustness of compound Dirichlet priors for Bayesian inference of branch lengths.

We modified the phylogenetic program MrBayes 3.1.2 to incorporate the compound Dirichlet priors for branch lengths proposed recently by Rannala, Zhu, and Yang (2012. Tail paradox, partial identifiability and influential priors in Bayesian branch length inference. Mol. Biol. Evol. 29:325-335.) as a solution to the problem of branch-length overestimation in Bayesian phylogenetic inference. The co...

متن کامل

Gibbs Sampling Methods for Stick-Breaking Priors

A rich and  exible class of random probability measures, which we call stick-breaking priors, can be constructed using a sequence of independent beta random variables. Examples of random measures that have this characterization include the Dirichlet process, its two-parameter extension, the two-parameter Poisson–Dirichlet process, Ž nite dimensional Dirichlet priors, and beta two-parameter pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of machine learning research : JMLR

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2010